1. Answer

(i) No.

Let $\varphi : \mathbb{Z}/5\mathbb{Z} \mapsto S_4$ be a homomorphism and $e \neq x \in \mathbb{Z}/5\mathbb{Z}$. Then $o(\varphi(x))|o(x) = 5$ and $o(\varphi(x))|o(S_4) = 24$. So that $o(\varphi(x)) = 1$, $\varphi(x) = e'$ identinty in S_4 . Therefore φ is trivial homomorphism. (ii) Yes.

Let $o(G) = 9 = 3^2$. We know that $o(G) = o(Z(G)) + \sum_{a \notin Z(G)} [G, C(a)]$, so $o(Z(G)) \neq 1$. Therefore o(Z(G)) = 3 or 9. If o(Z(G)) = 9, Z(G) = G, implies G is abelian. Suppose o(Z(G)) = 3. Then we have o(G/Z(G)) = 3, so G/Z(G) is cyclic. Hence G is abelian. (iii) Yes.

Recall that centre of a group G, $Z(G) = \{x \in G | gx = xg, \forall g \in G\}$. To show $Z(S_n) = \{e\}$, it is enough to show that for all $\sigma \in S_n$, $e \neq \sigma$ there exists $\tau \in S_n$ such that $\sigma \tau \neq \tau \sigma$. Since $\sigma \neq e$, we have $\sigma(a) = b$ for some $a \neq b$, $a, b \in \{1, 2, ..., n\}$. As $n \geq 3$, we can choose $c \in \{1, 2, ..., n\}$, such that $c \neq b \ (\neq a)$. Now take $\tau = (b \ c)$. Then $\sigma \tau(a) = \sigma(a) = b$ and $\tau \sigma(a) = \tau(b) = c$. Therefore $\sigma \tau \neq \tau \sigma$.

(iv) No.

 $\{(1), (12)(34), (13)(24), (14)(23)\}\$ is a normal subgroup of A_4 .

2. Answer

(a) $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is a non abelian group under multiplication. $\{1, -1\}, \{\pm 1, \pm i\}, \{\pm 1, \pm j\}, \{\pm 1, \pm k\}$ are the sub groups of Q_8 and these are all normal subgroups. (b) Define $\varphi : \mathbb{R}/\mathbb{Z} \to S^1 = \{z \in C : |z| = 1\}$ by $\varphi(x + \mathbb{Z}) = e^{2\pi i x}, 0 \leq x < 1$. Then, clearly φ is an

isomorphism. (c) If φ is from \mathbb{Q}/\mathbb{Z} to S^1 . Then $\varphi(p/q + \mathbb{Z}) = e^{2\pi i p/q}$, $0 \le p/q < 1$. Therefore $\varphi(\mathbb{Q}/\mathbb{Z}) = \{z \in \mathbb{C} : z^n = z^n \le 1\}$

(c) If φ is from \mathbb{Q}/\mathbb{Z} to S^1 . Then $\varphi(p/q + \mathbb{Z}) = e^{2\pi i p/q}$, $0 \le p/q < 1$. Therefore $\varphi(\mathbb{Q}/\mathbb{Z}) = \{z \in \mathbb{C} : z^n | z, n \text{ th roots of unity, for some } n \in \mathbb{N}\}.$

3. (a) For any $\sigma \in S_n$ and any $d \leq n$, we have

$$\sigma(12\ldots d)\sigma^{-1} = (\sigma(1)\sigma(2)\ldots\sigma(d)).$$

So that any conjugate of a *d*-cycle is again a *d*-cycle. We know that every permutation is a product of disjoint cycles, so the cycle types of conjugate permutations are same.

Conversly suppose $\varphi, \ \psi$ are two permutations of same cycle type. Let

$$\varphi = (a_1 \dots a_r)(a_{r+1 \dots a_s}) \cdots (a_l \dots a_m)$$
$$\psi = (b_1 \dots b_r)(b_{r+1 \dots b_s}) \cdots (b_l \dots b_m).$$

Now define $\sigma \in S_n$ by $\sigma(a_i) = b_i$, $1 \le i \le m$. Then

$$\sigma\varphi\sigma^{-1} = \sigma(a_1\dots a_r)(a_{r+1\dots a_s})\cdots(a_l\dots a_m)\sigma^{-1}$$

= $\sigma(a_1\dots a_r)\sigma^{-1}\sigma(a_{r+1\dots a_s})\sigma^{-1}\cdots\sigma(a_l\dots a_m)\sigma^{-1}$
= $(\sigma(a_1)\dots\sigma(a_r))(\sigma(a_{r+1})\cdots\sigma(a_s))\cdots(\sigma(a_l)\cdots\sigma(a_m))$
= $(b_1\dots b_r)(b_{r+1\dots b_s})\cdots(b_l\dots b_m)$
= ψ .

Therefore φ , ψ are conjugates.

(b) We know that $|[S_7; C_{S_7}(\sigma)]| = |cl_{S_7}(\sigma)|$ where $cl_{S_7}(\sigma)$ is the conjugancy class of σ .

Now we have

$$|C_{S_7}(\sigma)| = \frac{|S_7|}{|[S_7; C_{S_7}(\sigma)]|} = \frac{|S_7|}{|cl_{S_7}(\sigma)|}$$

But

$$|cl_{S_7}(\sigma)| = \frac{7!}{[(3)^1 1!][(1)^4 4!]} = \frac{7!}{3 \times 4!}.$$

Therefore $|C_{S_7}(\sigma)| = 3 \times 4! = 72.$

For any $\alpha \in S_7$, we have $\alpha \sigma \alpha^{-1} = (\alpha(2) \ \alpha(4) \ \alpha(6))$. So

$$\alpha \sigma \alpha^{-1} = \sigma \Leftrightarrow (\alpha(2) \ \alpha(4) \ \alpha(6)) = (2 \ 4 \ 6).$$

Therefore $(\alpha(2) \ \alpha(4) \ \alpha(6)) \in \{(2 \ 4 \ 6), (6 \ 2 \ 4), (4 \ 6 \ 2)\} = A$ (say). Hence $C_{S_7}(\sigma) = \{\alpha \in S_7 | (\alpha(2) \ \alpha(4) \ \alpha(6)) \in A\}$ and it has 72 elements.

4.(a) See Thereom 9.4 (page 179), 'Contemporary Abstract Algebra (Book)' by Joseph A. Gallian. (b) Let $G = \langle x \rangle$. For d, $1 \leq d \leq n$ and (d, n) = 1, we define $\phi_d : G \mapsto G$ by $\phi_d(x^i) = x^{di}$. Then $\phi_d(x^ix^j) = \phi_d(x^i)\phi_d(x^j)$, so it is a homomorphism. If $\phi_d(x^i) = \phi_d(x^j)$, then $x^{d(i-j)} = e$. So n|d(i-j). As (d, n) = 1 and $1 \leq i, j \leq n$, we have i = j. Therefore ϕ_d is one-one. Hence ϕ_d is an automorphism.

Let f be any automorphism of G. Then $f(x) \in G$. So we have $f(x) = x^m$ for some $1 \leq m \leq n$. Since f is an automorphism, o(f(x)) = o(x) = n. Which implies (m, n) = 1. Therefore $f = \phi_d$, for some d, (d, n) = 1. So that ϕ_d are all only the automorphisms of G. The set of automorphisms $\{\phi_d : (d, n) = 1\}$ forms a group and order of this group is $\phi(n)$.

5. (a) See Application 1 (page 61), 'Topics in Algebra (Book)' by i.n. herstein.

(b) See Thereom 2.11.3 (page 87), 'Topics in Algebra (Book)' by i.n. herstein.